Donnerstag, November 21, 2024
spot_img
StartKIAlgorithmen verbessern Analyse medizinischer Bilder

Algorithmen verbessern Analyse medizinischer Bilder

Auf Deep Learning basierende Algorithmen können Tumoren erkennen – Forscher des KIT unter den besten Teams beim internationalen AutoPET Wettbewerb – Publikation in Nature Machine Intelligence

Künstliche Intelligenz kann die Auswertung von medizinischen Bilddaten verbessern. So können auf Deep Learning basierende Algorithmen die Lage und Größe von Tumoren feststellen. Dies ist das Ergebnis von autoPET, eines internationalen Wettbewerbs zur medizinischen Bildanalyse. Forscher vom Karlsruher Institut für Technologie (KIT) erreichten den fünften Platz. Wie Algorithmen in der Positronen-Emissions-Tomographie (PET) und in der Computertomographie (CT) Tumorläsionen erkennen können, berichten die sieben besten autoPET Teams in der Zeitschrift Nature Machine Intelligence (DOI: 10.1038/s42256-024-00912-9).

Bei der Diagnose von Krebs kommt bildgebenden Verfahren eine wesentliche Bedeutung zu. Die Lage, Größe und Art von Tumoren präzise zu bestimmen, ist entscheidend dafür, die passende Therapie zu finden. Zu den wichtigsten bildgebenden Verfahren gehören die Positronen-Emissions-Tomographie (PET) und die Computertomographie (CT). Die PET macht Stoffwechselvorgänge im Körper mithilfe von Radionukliden sichtbar. Bösartige Tumoren haben oft einen deutlich intensiveren Stoffwechsel als gutartige Gewebe. Verwendet wird dazu radioaktiv markierter Traubenzucker, meist Fluor-18-Desoxyglucose (FDG). Bei der CT wird der Körper in einer Röntgenröhre Schicht für Schicht durchleuchtet, um die Anatomie sichtbar zu machen und Tumoren zu lokalisieren.

Automatisierung kann Zeit sparen und Auswertung verbessern

Krebspatientinnen und Krebspatienten haben teilweise Hunderte von Läsionen, das heißt durch das Wachstum von Tumoren verursachte krankhafte Veränderungen. Für ein einheitliches Bild gilt es, alle Läsionen zu erfassen. Medizinerinnen und Mediziner bestimmen die Größe der Tumorläsionen, indem sie 2D-Schichtbilder manuell markieren – eine extrem aufwendige Arbeit. „Eine automatisierte Auswertung durch einen Algorithmus würde enorm Zeit sparen und die Ergebnisse verbessern“, erklärt Professor Rainer Stiefelhagen, Leiter des Computer Vision for Human-Computer Interaction Lab (cv:hci) des KIT.

Rainer Stiefelhagen und Zdravko Marinov, Doktorand am cv:hci, haben 2022 am internationalen Wettbewerb autoPET teilgenommen und unter 27 Teams mit 359 Teilnehmenden aus aller Welt den fünften Platz erreicht. Dabei bildeten die Karlsruher Forscher mit Professor Jens Kleesiek und Lars Heiliger vom IKIM – Institut für Künstliche Intelligenz in der Medizin in Essen ein Team. Organisiert vom Universitätsklinikum Tübingen und vom LMU Klinikum München, verband autoPET Bildgebung und maschinelles Lernen. Die Aufgabe bestand in der automatischen Segmentierung stoffwechselaktiver Tumorläsionen auf Ganzkörper-PET/CT. Für das Algorithmentraining hatten die teilnehmenden Teams Zugang zu einem großen kommentierten PET/CT-Datensatz.

Alle für die letzte Phase des Wettbewerbs eingereichten Algorithmen basieren auf Methoden des Deep Learning. Dabei handelt es sich um einen Bereich des maschinellen Lernens, der vielschichtige künstliche neuronale Netze einsetzt, um komplexe Muster und Zusammenhänge in großen Datenmengen zu erkennen. Die sieben besten Teams aus dem Wettbewerb autoPET berichten nun in der Zeitschrift Nature Machine Intelligence über die Möglichkeiten automatisierter Auswertung medizinischer Bilddaten.

Algorithmenensemble erkennt Tumorläsionen am besten

Wie die Forschenden in ihrer Publikation erklären, erwies sich ein Ensemble der bestbewerteten Algorithmen als überlegen gegenüber einzelnen Algorithmen. Das Algorithmenensemble kann die Tumorläsionen effizient und präzise erkennen. „Die Leistung der Algorithmen bei der Bilddatenauswertung hängt allerdings von der Quantität und der Qualität der Daten ab, aber auch vom Algorithmendesign, beispielsweise was die Entscheidungen bei der Nachbearbeitung der vorhergesagten Segmentierung betrifft“, erklärt Professor Rainer Stiefelhagen. Um die Algorithmen zu verbessern und robuster gegenüber äußeren Einflüssen zu machen, sodass sie sich im klinischen Alltag einsetzen lassen, sind weitere Forschungsarbeiten erforderlich. Ziel ist, die Analyse der medizinischen Bilddaten aus PET und CT in näherer Zukunft vollständig zu automatisieren.

Originalpublikation

Sergios Gatidis, Marcel Früh, Matthias P. Fabritius, Sijing Gu, Konstantin Nikolaou, Christian La Fougère, Jin Ye, Junjun He, Yige Peng, Lei Bi, Jun Ma, Bo Wang, Jia Zhang, Yukun Huang, Lars Heiliger, Zdravko Marinov, Rainer Stiefelhagen, Jan Egger, Jens Kleesiek, Ludovic Sibille, Lei Xiang, Simone Bendazzoli, Mehdi Astaraki, Michael Ingrisch, Clemens C. Cyran & Thomas Küstner: Results from the autoPET challenge on fully automated lesion segmentation in oncologic PET/CT imaging. Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9

Weitere Informationen zum cv:hci des KIT

Bildunterschrift: Automatische Verfahren ermöglichen die Analyse von PET/CT-Scans (links) zur präzisen Vorhersage von Tumorlage und -größe (rechts) für eine verbesserte Diagnose und Therapieplanung. (Abbildung: Gatidis S, Kuestner T. (2022) A whole-body FDG-PET/CT dataset with manually annotated tumor lesions (FDG-PET-CT-Lesions) [Dataset]. The Cancer Imaging Archive. DOI: 10.7937/gkr0-xv29)

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 10 000 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 22 800 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.

Bild Kuenstliche Intelligenz Algorithmen verbessern Analyse medizinischer Bilder

Quelle: Karlsruher Institut für Technologie (KIT)

UNITEDNETWORKER
UNITEDNETWORKER
Der UNITEDNETWORKER akribisch recherchierte Informationen über Gründer und Startups. Neben Porträts junger Unternehmer und erfolgreicher Startups und deren Erfahrungen liegt der Fokus auf KnowHow von A bis Z sowohl für Gründer, Startups und Interessierte. Wir begleiten, Startups von der Gründungsphase bis zum erfolgreichen Exit.

UNITEDNETWORKER NEWSLETTER

ABONNIERE jetzt unseren kostenlosen Newsletter und erhalte Regelmäßig die wichtigsten Tipps für deine Karriere bequem per eMail in dein Postfach!

spot_img
spot_img
spot_img
spot_img
spot_img

Neueste Beiträge

Das könnte dir auch gefallen!